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Combinatorial chemistry is a tool of increasing importance in the field of ligand design, as it
can yield huge increases in the number of compounds available for screening. Unfortunately,
it is often the case that the number of molecules which could theoretically be constructed greatly
exceeds potential synthesis and screening capacity. For this new technology to be fully
exploited, it will become vital to design libraries with reference to the properties of compounds
already in existence, if the added value of each newmolecular collection is truly to be maximized.
Similarly, if we are to take full advantage of the potential of combinatorial chemistry in lead
optimization, it is important that our library design paradigms are flexible, with diversity
scoring functions that can be modified to suit particular projects. Here these challenges are
addressed through the introduction of a novel computer-aided library design tool known as
HARPick (heuristic algorithm for reagent picking). The program is accessible to the bench
chemist, and incorporates several significant advances over currently available approaches.
These include product-based diversity calculations that can be constrained at the reagent level;
diversity measures constructed from multiple descriptors; improved pharmacophore key
information and full pharmacophore profiling of entire molecular databases. The potential of
these improvements to aid in diversity profiling is illustrated through comparison with
established methodology, and possible further enhancements are discussed.

Introduction

With the ever increasing role of combinatorial syn-
thesis in medicinal chemistry, the requirement to create
computational tools that aid in library design has
become acute.1 To meet this need, a number of groups
have developed new methodology for diversity measure-
ment and compound selection.2-7 In this paper, we first
highlight some concerns with existing methodology and
then describe our efforts to overcome them using the
HARPick (heuristic algorithm for reagent picking)
program. The resulting advances are illustrated and
discussed critically, and finally, potential areas for
further improvement are presented.

Combinatorial Libraries

There are many different strategies for performing
combinatorial chemistry,1 and the most appropriate
technology to use is dependent on the resources and
goals of the project. In its broadest sense, combinatorial
chemistry can be defined as the process of making all
possible combinations of appropriate reagents using a
given reaction. Using this definition, it is easy to see
how the number of possible reaction products will
greatly exceed the resources of all but the most profli-
gate organization. If we consider the example of an
amide condensation, choosing all the available reagents
from a commercial catalogue could lead to the selection
over 3000 amine synthons and 3000 acid synthons.
Combining these two reagent sets would result in a total
of 9 million products. (Throughout this paper, the
starting point of any discussion will be a virtual com-
binatorial library in which all possible products have
been enumerated in computers, with the goal of design-
ing a much smaller library for actual synthesis.) As-

suming a screening cost of $0.10 per compound, the cost
of screening the library would approach $1 million,
ignoring the need to store around 10 000 96-well plates,
and the need to dispose of large quantities of waste
(possibly radioactive) that would be generated by the
screening. Such constraints demand that we adopt a
strategy of designing a “rational” subset and begs the
question of what is meant by the term “rational”.
Measurement of Molecular Diversity. Many de-

scriptors are available to describe molecular diversity
in terms relevant to drug-receptor interactions.2 These
measures include reagent shape on a 3D lattice,3 2D/
3D fingerprints,4 and pharmacophore keys.4-6 There
have been a number of papers that have attempted to
assess descriptor quality for diversity profiling.4,7 De-
scriptors were ranked by their ability to discriminate
active and inactive compounds within a number of
medicinal chemistry project data sets. In these studies,
it was suggested that 2D fingerprints and simple shape
descriptors make better descriptors than other alterna-
tives such as 3D pharmacophore fingerprints. From our
own perspective, such assertions regarding descriptor
quality are rather sweeping. 2D substructure searches
are used routinely to extract analogues from databases.8
Similarly, measurement of shape variation provides one
of the staple descriptors of 3D-QSAR calculations.9 A
capacity to distinguish active from inactive analogues
from a single biological screen at a nanomolar level, is
hardly proof of an ability to discriminate between
heterogeneous activity classes. Within a single activity
class, differences as small as a methyl group can have
significant effects on activity. The structural differences
that exist between different receptors will tend to be
much larger, however. Thus, to some extent, the results
of such studies could have been predicted. Perhaps the
best lesson to be drawn from these descriptor compari-X Abstract published in Advance ACS Abstracts, November 1, 1997.

3926 J. Med. Chem. 1997, 40, 3926-3936

S0022-2623(97)00403-2 CCC: $14.00 © 1997 American Chemical Society



sons is that 2D and simple shape descriptors may be
well suited to the design of lead optimization libraries.
Pharmacophore Descriptors. A pharmacophore,

defined here as the critical geometric arrangement of
molecular fragments required for binding,10 provides an
efficient descriptor for primary ligand-receptor interac-
tions, defining a necessary but not sufficient condition
for biological activity. When we reviewed the literature
on searching for novel leads within 3D databases, the
general consensus suggested that pharmacophores are
the descriptors of choice.11 Results of 3D flexible
searching within databases of known compounds have
proven this in a practical sense.12 To us, it therefore
seems reasonable to employ such descriptors for molec-
ular diversity calculations, as libraries providing good
coverage of accessible pharmacophore space should also
prove a good source of new leads. Another major
advantage of pharmacophores is the fact that they are
a whole molecule descriptor, including within them the
concept of conformational flexibility.11

Product Diversity and Reagent Diversity. The
use of pharmacophores implies that diversity is mea-
sured on the products of the combinatorial reaction,
rather than the reagents alone. This is a more compu-
tationally expensive choice, simply because of the
numbers involved. There are good reasons for making
this choice. Reagent-based descriptors and diversity
assessments are based on the assumption of the proper-
ties of fragments being additive and independent when
assessing diversity for each molecule in a combinatorial
library.3 This will not be the case for pharmacophore-
based (or most other 3D) functions. In addition, it has
been shown that, when profiling data sets employing
descriptors derived from library products, the resulting
compound selections cover diversity space more ef-
ficiently than comparable calculations utilizing re-
agents.13 Third, care must be taken with reagent-based
functions to make sure that they are suitable for
interlibrary comparisons: this is the same argument as
for the choice between clustering and partitioning data.
In contrast, the pharmacophore descriptor is ideal for
interlibrary comparisons. Given the relative speed of
the calculations, our practical experience is that library
design is not the rate-limiting step in combinatorial
synthesis, so that there is a definite cost benefit to
performing product-based calculations of the type that
we describe below. For all of these reasons, since we
are concerning ourselves primarily with such general
screening libraries in this paper, we have chosen to use
pharmacophores as our primary descriptor and have
developed product-oriented methods, despite the extra
computational cost.
Division of Descriptor Space. Two basic proce-

dures are currently in use for dividing descriptor space.
These involve the application of (i) clustering techniques
and (ii) cell-based partitioning approaches for compound
selection. Clustering methodology can be defined as the
division of a group of objects into clusters with high
intracluster similarity and intercluster dissimilarity.
Such techniques have been utilized for many years for
generating diverse compound sets for screening.2-4,8

Partitioning involves the subdivision of property space
into a number of regions (bins). Partition-based profil-
ing is then generally defined as the selection of an object
subset for maximal coverage of these property bins. This

approach is already being applied extensively in com-
pound selection calculations.2,5,6,14,15

Clustering has the advantage of cleanly dividing up
data sets which distribute themselves discontinuously
in property space. For general library design, however,
we anticipate the saturation of property space, and
hence discontinuity should not present a major problem.
Partitioning techniques have the benefit of providing a
convenient common frame of reference in property
space, making comparison between different libraries
a simple process. Another advantage of cell-based
methodology is that calculation times tend to scale
linearly with the number of molecules being processed,
making the partitioning paradigmmore suitable (faster)
for large data sets. A problem with clustering specific
to the descriptors used with these studies is that it is
difficult to employ a pharmacophore fingerprint for
clustering calculations (a potential problem encountered
in one of the descriptor comparison studies4). This is
because the fingerprint is (i) too sparse on a per
molecule basis, making the similarity measure very
discontinuous and (ii) too sensitivesthe number of
pharmacophores present in a given molecule varies as
approximately the cube of the number of pharmacophore
centers. Small molecular differences can thus poten-
tially lead to large differences in fingerprint.
As we wished to employ pharmacophore descriptors

over large data sets and include the ability to undertake
interlibrary comparison, we chose to use a partition-
based approach.

The Chem-Diverse Approach

A number of studies have been undertaken into the
efficacy of pharmacophore triplets as molecular descrip-
tors.16,17 Recently a commercial program, Chem-
Diverse,5,6 has been developed to exploit pharmacophore
triplet information in diversity profiling. Chem-Diverse
provides a variety of useful tools for diversity assess-
ment by pharmacophore and is becoming an industry
standard for this aspect of combinatorial chemistry. The
Chem-Diverse protocol for molecular diversity is based
on trying to obtain the maximum coverage of pharma-
cophore space by potential combinatorial chemistry
products (Figure 1).
While the methodology employed fits in with our

general requirements of a partition-based approach for
assessing pharmacophore diversity, the current version
Chem-Diverse suffers from a number of technical draw-
backs which need to be addressed. These are discussed
below.
Library Profiling and Compound Selection Us-

ing Chem-Diverse. A central part of the Chem-
Diverse compound selection procedure requires on-the-
fly conformational analysis of all potential library
products (see Figure 1). Any pharmacophores found are
added to a single pharmacophore key, which describes
the ensemble of selected molecules. Compounds are
only selected if the set of pharmacophores they express
overlaps with the ensemble key by less than a user-
defined amount, that is, if the molecule contains a
significant number of previously unseen pharmaco-
phores. As a consequence, the results of such searches
are dependent on the order in which the molecules are
extracted from the database (analogous to the single-
pass clustering algorithm18).
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There is no facility within Chem-Diverse to calculate
diversity while constraining the number of reagents
present in the selected products. This is crucial if
control is to be exerted over the number of reagents
required for any particular library synthesis. Instead,
Chem-Diverse chooses molecules purely based on what
it considers to be the most diverse set of products
(“cherry-picking”), with no explicit reference to the
constituent reagents. As a result, Chem-Diverse will
often make an combinatorially inefficient selection of
products. By inefficient we mean that, for example,
when selecting 100 products from a two component
combinatorial library (for example the amide condensa-
tion discussed earlier), rather than choose an 100%
efficient 10 × 10 reagent set, Chem-Diverse will instead
choose compounds comprising a larger reagent subset,
say 30 × 20. Using such a selection would be both more
costly and more complicated to program up on the
synthesis robot and is thus termed inefficient. To
achieve an efficient subset of products from a virtual
combinatorial library using Chem-Diverse, selections
must be analyzed by the user to determine the most
frequently occurring reagents and repeated until even-
tually the final reagent choice is made.
Measurement of Diversity within Chem-Diverse.

Within Chem-Diverse, modification of the search criteria
to include additional molecular properties such as shape

is not currently feasible. This is because the diversity
function employed by Chem-Diverse cannot include any
nonpharmacophoric properties. It is possible to remove
unwanted reagents by assigning upper and lower bounds
for given properties in their resulting products. Limita-
tions in compound selection as described above makes
such an approach rather risky, however, since it is not
possible to devise an objective method of reagent
removal which is entirely divorced from the product
descriptors. This is important, because not all products
created by a given reagent will necessarily be undesir-
able. Indeed, it may only be a few that are poor, with
the remaining products adding much to the diversity
of the library.
Limitations in Chem-Diverse Pharmacophore

Keys. The Chem-Diverse pharmacophore keys are
potentially extremely useful tools for directing library
design. However, they are limited in their current
incarnation, as the library key only registers whether
or not a particular pharmacophore exists in the selected
molecular ensemble, not how many times it is found.
[The creation of a nonbinary key within Chem-Diverse
has been developed since this work began. However,
the current implementation (Oct96 version) still does
not exploit the nonbinary pharmacophore data to con-
strain the construction of new libraries.] This makes
the key prone to saturation, even when artificially small
distance bins are applied, as is the case with the default
bin settings in Chem-Diverse.

Methodology

To meet our requirements for diversity profiling, the
HARPick program was developed. The basic outline of
HARPick is illustrated in Figure 2. A number of
features have been incorporated in the software to
overcome many of the problems associated with Chem-
Diverse. These are listed below.
Introduction of a Stochastic Optimization Al-

gorithm. To remove the order dependence (product
selection is dependent on the order in which the
products are processed) of Chem-Diverse calculations
and allow reagent selection direct from product diver-
sity, an alternative technique of compound selection was
required. We chose simulated annealing as our method,
as it has a proven track record for locating good (and
hopefully near global) minima on a complicated energy
surface (in this case, “energy” is defined as the diversity
function score), and could easily be incorporated into
our diversity profiling paradigm. Our implementation
is based on a standard simulated annealing algorithm,19
employing fixed-length Markov chains and dynamic
cooling.20 Essentially, all changes in reagent selection
which result in a reduction in the energy function (∆E)
are accepted, while changes producing a positive ∆E are
accepted with a probability of exp(-∆E/T), where T is
the annealing control temperature. In addition, a
simple minimizer was also included. The minimization
procedure only accepts reductions in ∆E and terminates
after failing to find a new minimum for a user-defined
number of Markov chains.
A number of studies have been undertaken which

apply stochastic optimization techniques to the problem
of diversity profiling. In general, optimization algo-
rithms have been used as a substitute for deterministic
techniques such as clustering.21,22 Some attempts have

Figure 1. The general paradigm for Chem-Diverse profiling
calculations. Key to pharmacophore centre types used here:
A ) hydrogen bond acceptor, D ) hydrogen bond donor, Ar )
aromatic ring centroid, Lip ) lipophilic centroid (center of
group of atoms with ∼0 charge), + ) charged positive.
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been made to postprocess data from resulting diversity
profile calculations, to determine frequently occurring
reagents.23 There have also been studies which high-
light the theoretical potential of decoupling the reagent
selection criterion from the diversity function calcula-
tion.24 We have attempted to take the application of
such methodology a stage further. As has been sug-
gested, the introduction of a stochastic optimization
technique makes the separation of object selection from
scoring function calculation simple. This has two
primary advantages.
(i) Reagent selection can now be divorced from the

diversity evaluation. It is then possible to make selec-
tions in reagent space, while diversity is calculated in
product space. This allows the user direct control over
the number of reagents selected from each component
pool of a combinatorial synthesis, rather than relying
on the Chem-Diverse “cherry-picking” approach de-
scribed above. This feature has been implemented in
HARPick (Figure 2).
(ii) It is simple to introduce flexible scoring functions

incorporating many diverse properties. Therefore, as
well as including pharmacophores as our primary
descriptor, it is also possible to add additional secondary
descriptors. The real advantage of this is that such
properties do not necessarily need to be made optimally
diverse. Rather, they may be moderating descriptors
designed to ensure sensible compound selection. A

number of such measures have been applied and are
described below.
Changes to Pharmacophore Profiling. For this

work the basic Chem-Diverse pharmacophore descrip-
tions are employed, using customized pharmacophore
center, pharmacophore distance, and conformational
search parameters. Each pharmacophore is specified
by three interaction centers involving seven center
types: (i) hydrogen bond donor, (ii) hydrogen bond
acceptor, (iii) hydrogen bond donor and acceptor, (iv)
aromatic, (v) hydrophobe, (vi) acidic, (vii) basic, leading
to a total of 84 combinations of three centers. Each
triangle edge distance is separated into 17 bins, leading
to a total of 184 884 geometrically accessible pharma-
cophores. The number of distance bins used in the key
creation has been adjusted to 17 instead of the 31 used
in the default version of Chem-Diverse. This increased
coarseness is felt to be justified when the large rota-
tional increments of the Chem-Diverse conformational
search procedures are considered. The 17 bins have
been tailored to approximate the 20% tolerance deter-
mined experimentally for 3D databse searches involving
rule-based conformational analyses.25

If we are to implement a stochastic optimization
algorithm in reagent selection, pharmacophore keys for
each molecule need to be stored on-line and accessed
as and when required. It is not possible to use standard
Chem-Diverse keys to store such data, since each key
requires around 30 Kbytes of hard disk space. To
overcome this, a Chem-X5 PCL (program control lan-
guage) script was written which profiles each data set
molecule, extracts the Chem-Diverse key, decodes it,
and writes out the individual pharmacophores found for
the structure. Since the key for an individual structure
is sparsely populated, a large saving in space can be
made with such an approach, since the absent pharma-
cophores, which make up the bulk of the disk space, are
ignored. Each pharmacophore written out requires 4
bytes of space; 1 for each of the three distances plus 1
for the pharmacophore type. Note that for each mol-
ecule, no single pharmacophore triplet can be hit more
than once. This is of importance because it prevents
particularly promiscuous molecules from skewing the
pharmacophore distributions. Many, if not most, phar-
macophores present in a molecule are small relative to
the largest pharmacophore in the structure and are thus
unlikely to explain the binding of that molecule to a
particular receptor. It would therefore be useful if a
technique were employed to remove these “insignificant”
pharmacophores. Chem-Diverse provides a method
which divides the area of any particular pharmacophore
triangle by the number of heavy atoms in the molecule.
Any triangles falling below a user-defined ratio for this
value are removed from the calculation. The problem
with such an approach is that the relationship between
heavy atom count and pharmacophore triangle area is
purely empirical. As a consequence, if the required ratio
is set high to remove a large number of such “insignifi-
cant” pharmacophores, some molecules can have all
their pharmacophores deleted. This happens when the
largest pharmacophore area present in the structure is
small relative to the number of heavy atoms. To get
around this problem, we have implemented an alterna-
tive, self-consistent method for pharmacophore removal.
The technique allows the user to set the minimum ratio

Figure 2. Structure of the HARPick program. The basic
procedure is centred around a simulated annealing function
which is used to make random selections of reagents from each
of the components of combinatorial synthesis. Some of the core
controls of the input file are shown. Particular features of the
program include the following: (i) The separation of compound
selection from the optimization function, allowing selection in
reagent space and diversity calculation in product space. (ii)
The facility to force the inclusion of named reagents from each
component in the calculation. This allows a user defined bias
to the selected data set including, for example, certain reagents
deemed essential by the chemists. (iii) The capability to weight
each of the functions used in the diversity calculation to suit
user requirements. See the methodology section for more
details.
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required for pharmacophore perimeter, relative to the
largest perimeter found for all pharmacophores in the
current structure. Since all calculations are carried out
with respect to the internal pharmacophore geometries
of each individual molecule, no structure can lose all
its pharmacophores, only the ones defined as small.
Implementation of a Customizable Diversity

Profiling Function. To fully exploit the application
of a simulated annealing paradigm, a variety of useful
functions have been incorporated into the diversity
evaluation routine:
(i) The primary function, Unique, included within

HARPick is equivalent to the scoring parameter em-
ployed by Chem-Diverse. That is, the Unique function
keeps a count of the number of pharmacophore bins
occupied in the selected set of library products. We are
also employing a nonbinary description of pharmaco-
phore space, which means that not only do we know
which pharmacophores are hit, but also how many
times. The Unique function thus corresponds to the
number of non-zero variables in our pharmacophore
integer array.
(ii) We have incorporated a partition function calcula-

tion to ensure the even distribution of three molecular
properties which provide a crude measure of shape.
(Note that we do not consider these descriptors as
necessarily the best meaures of shape. They are,
however, simple to calculate and do describe different
aspects of molecular size and geometry. They also il-
lustrate the ease with which diversity functions can be
modified when using a stochastic optimization method
for diversity analysis.) These are (a) number of heavy
atoms (ha), (b) largest triangle perimeter present for all
pharmacophores found (pp), (c) largest triangle area
present for all pharmacophores found (pa). The mini-
mum and maximum values for each property are
determined for the entire library of potential products.
The resulting property range is then divided into equal
partitions between these bounds. During the diversity
calculation, each selected molecule is assigned to a
partition according to its property value. The number
of molecules in each partition is then compared with
the number expected for a perfectly flat distribution.
The occupancy function is a maximum when each bin
is equally occupied, in the hope of forcing the molecules
in the generated product subset to have an even
distribution of shapes or other properties, while still
maximizing pharmacophore diversity.

where Partscore ) partition score, maxo ) maximum
possible mean absolute deviation (when all molecules
occupy a single partition), oj ) meanmolecule occupation
across all partitions p, oj ) number of molecules oc-
cupying partition j.
(iii) To allow control over molecular flexibility, a

function incorporating the number of calculable confor-
mations for each molecule (as defined by the conforma-
tional search criterion used in the Chem-Diverse pro-
filing PCL script) has been included.

where Flex ) flexibility score, fi ) the number of
calculable conformations for molecule i, n ) number of
selected molecules.
(iv) If we are to fully exploit the pharmacophoric data

available, it is crucial that we move beyond binary key
descriptions of libraries. As described above, the first
step of our procedure is to compute and extract the
pharmacophores for all (potential) products and store
the results using Chem-Diverse. It is then a simple task
to sum the resulting molecular profiles and produce an
overall description of library pharmacophore coverage.
This descriptor may then be employed as a constraint
to optimize pharmacophore spread in any potential new
libraries. To this end, a constraining function has been
added to the profiling routine in order to weight phar-
macophore selection toward filling the diversity voids
in previously constructed libraries.

where Conscore ) constraint score, Oi ) number of
times pharmacophore i has been hit for molecules
selected from current data set, Si ) score associated
with pharmacophore i for the constraining library, a )
number of accessible pharmacophores.

where max(0,av cov-Oci)) ) maximum of the values 0
and av cov-Oci, av cov ) the average pharmacophore
count across all occupied pharmacophores in constrain-
ing library, Oci ) number of molecules containing
pharmacophore i in the constraining library, ν ) user
defined weight.

where min(Oci,â)) ) minimum of the values Oci and â,
â ) user-defined maximum contribution to av cov by any
single pharmacophore, Uniquec ) number of pharma-
cophore bins occupied in constraining library.
(v) To allow the user to weight the score against

promiscuous molecules (structures which exhibit a large
number of pharmacophores), the total number of phar-
macophores present in all currently selected molecules
(Totpharm) is also included in our “energy” function.
(vi) Finally, the total number of scoring molecules (S)

in the selected set is also included. This is used to
weight the selected data set to include more molecules
that pass user defined bounds of acceptability (for
example based on maximum flexibility or pharmaco-
phore promiscuity). All these features are combined to
create our overall scoring function.

Partscore )

maxo - ∑
j)1

p x(oj - oj)
2

maxo
(1)

Flex )

∑
i)1

n

fi

n
(2)

Conscore ) ∑
i)1

a

OiSi (3)

Si ) [max(0,(av cov-Oci))]
ν (4)

av cov )

∑
i)1

a

min(Oci,â)

Uniquec
(5)
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where w, x, y, z ) user defined weights.

Experimental Section
Two data sets were used to study the behaviour of HARPick,

both in general terms and with respect to its nearest relative,
Chem-Diverse:
(i) 20168 molecules taken from the Standard Drug File

(SDF).26 All the molecules chosen had between 15 and 51
heavy atoms (excluding halogens), a simplistic criterion for
choosing molecules with “druglike” size. Note that we employ
this technique as a general screen for molecule size. In the
case of the SDF, it is less relevant, although many of the
smaller molecules removed tend to be of less interest (e.g.
antiseptics), while most of the larger structures are peptides.
All these structures were converted to 3D using Concord.27
(ii) A simple hypothetical combinatorial library comprising

two components undergoing amide bond formation (Figure 3).
The acids and amino acids for the library were selected from
the available chemicals database (ACD).28 The reagents
selected were constrained to be of between 8 and 25 heavy
atoms (excluding halogens) so that the products matched the
size of the molecules selected from the SDF (again a “druglike”
size). Molecules with a heteroatom ratio (ratio of the number
of heteroatoms, excluding halogens, versus the total number
of heavy atoms in the molecule) outside the 0.1-0.5 range (the
range in which >90% of the molecules in the SDF fall) were
then removed, as were structures containing undesirable (e.g.
toxic and reactive) groups.15
It should be noted at this point that, although we would

prefer to profile the complete virtual library, the total number
of reagents available to many combinatorial libraries (includ-
ing the one used here) make such an approach prohibitive.
We must therefore filter the reagent pools down to a size we
can deal with in product space (<100 000 products) using
simpler and more rapidly calculable descriptors. To this end,
reagents were clustered using 2D Daylight29 fingerprints and
Wooton spheres30 at a similarity level of 0.775. This method-
ology is designed to provide a rapid means for discarding
molecules with similar 2D structures.
All the molecules passing these tests were converted into

3D using Concord. Six acids were found to cause problems
upon conversion to 3D and these were also removed. This left
67 amino acids and 505 acids, giving a total library size of
33 835 products. Both the SDF and hypothetical libraries were
then profiled using Chem-X/Chem-Diverse (July96 version)
software, employing our own PCL script. The resulting
molecular pharmacophore profiles, heavy atom count and
flexibility values were stored on disk. The SDF required
around 1 day to be profiled on an SGI 195 MHz R10000 (upon
which all calculations were undertaken). Around 6 days were
required to profile the hypothetical library structures. Five
experiments were undertaken using these data sets to analyze
the performance of HARPick.
(1) A full pharmacophore profile of the SDF data set was

calculated to show the pharmacophore distribution across a
typical molecular collection.
(2), (3) Chem-Diverse and HARPick were applied to the task

of compound subselection from the SDF, under various condi-
tions.
(4) Calculations employing the hypothetical library were

executed, on this occasion to highlight the performance of
HARPick when selecting compounds from multicomponent
data sets.
(5) Subselections were made from the hypothetical library

with reference to the full SDF profile to illustrate the ability
of HARPick to choose constrained libraries.

Results
(1) The full SDF profile was studied to illustrate the

nonbinary nature of pharmacophore profiles. Structure

pharmacophores with a perimeter ratio of less 0.7
relative to the largest pharmacophore perimeter found
in the same molecule were removed. The resulting
histogram of pharmacophore distributions is illustrated
in Figure 4.
(2) Diverse subset selections of the SDF were made

using Chem-Diverse and HARPick to illustrate their
diversity profiling characteristics.
(i) Chem-Diverse was used to select a subset of the

library based on pharmacophore diversity. The mol-
ecules were ordered according to heavy atom count
(smallest to largest) to try to force the selection of
smaller pharmacophores from smaller structures. The
maximum pharmacophore overlap percentage permitted
between each keyed molecule and the total library key
was set to 60%. All molecules in the library were
processed, with any passing the selection criterion being
added to the selected subset. This calculation resulted
in the selection of 372 molecules.
(ii) Three HARPick runs were then undertaken on the

same SDF data set, with the program set to select an
identical set size to Chem-Diverse (372) using different
diversity criteria: (a) Maximize the internal pharma-
cophore diversity only. The following values and weights
were applied to the diversity function (see eqs 3 and 6):
Conscore ) 1, w ) 1, x ) 0, y ) 0, z ) 0. (b) Maximize
the internal pharmacophore diversity while maximizing
the shape partition scores. Diversity function values
and weights applied: Conscore ) 1, w ) 1, x ) 1, y )

energy ) (Uniquew × Conscore × Partscorepp
x ×

Partscorepa
x × Partscoreha

x × S)/(Totpharmy ×
FlexZ × n) (6)

Figure 3. Two component hypothetical library used in the
HARPick experiments, comprising “amino acid” (component
1) and acid (component 2) reagents.

Figure 4. Pharmacophore frequency distribution histogram
for 20 169 molecules taken from the SDF (study 1). Total
number of pharmacophore in profile ) 4 797 745. Number of
geometrically accessible pharmacophores ) 184 884. Number
of different pharmacophore triplets found in library ) 126 553.
Thus over 68% (126553/184884) of the accessible pharmaco-
phores are present in the library.
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0.75, z ) 0. (c) Maximize the internal pharmacophore
diversity while maximizing the shape partition scores
and minimizing the flexibility. Diversity function val-
ues and weights applied: Conscore ) 1, w ) 2.0, x )
0.5, y ) 0.75, z ) 0.33.
(iii) To provide a reference set, the average data from

three random selections of 372 molecules were also
collated.
Note: For all the above HARPick calculations, struc-

ture pharmacophores with a perimeter ratio of less than
0.7 relative to the largest pharmacophore perimeter
found in the same molecule were removed. The result-
ing diversity profiling data are shown in Table 1 and
Figure 5.
(3) All promiscuous molecules (structures containing

>1500 pharmacophores or >10 000 calculable conform-
ers) were removed from the SDF set. The remaining
15 716 structures were again profiled using Chem-
Diverse and HARPick using different search conditions.
(i) For a second time, Chem-Diverse was used to select

a subset based on pharmacophore diversity. For this
calculation molecules were ordered randomly, as recom-
mended by Chemical Design for large data sets. The
maximum pharmacophore overlap percentage permitted
between each keyed molecule and the total library key
was once more set to 60%. In addition, a pharmaco-
phore area to heavy atom count ratios of 0.4 was
enforced. The calculation was set to terminate after the
selection of 400 molecules, which Chem-Diverse achieved
after processing 4500 structures.
(ii) Five HARPick runs were then undertaken on the

same SDF data set, with the program set to select an
identical set size to Chem-Diverse (400) using various
diversity criteria: (a) Maximize the internal pharma-
cophore diversity only. Diversity function values and
weights applied: Conscore ) 1, w ) 1, x ) 0, y ) 0, z )
0. (b) Maximize the internal pharmacophore diversity
while maximizing the shape partition scores. Diversity
function values and weights applied: Conscore ) 1, w
) 1.5, x ) 1, y ) 0.75, z ) 0. (c) Maximize the internal
pharmacophore diversity while maximizing the shape
partition scores and minimizing the flexibility. Diver-
sity function values and weights applied: Conscore )
1, w ) 2.0, x ) 0.5, y ) 0.75, z ) 0.33. (d) Maximize
the internal pharmacophore diversity while trying to
minimize the pharmacophore promiscuity of the selected
molecules. Diversity function values and weights ap-
plied: Conscore ) 1, w ) 1.75, x ) 0, y ) 1.0, z ) 0. (e)
Try to balance all the nonconstraint elements of the

diversity function. Diversity function values and weights
applied: Conscore ) 1, w ) 1.75, x ) 0.25, y ) 1.0, z )
0.33.
(iii) To provide a reference set, the average data from

three random selections of 400 molecules were also
collated.
Note: For all the above HARPick calculations, struc-

ture pharmacophores with a perimeter ratio of less than
0.7 relative to the largest pharmacophore perimeter
found in the same molecule were removed. The result-
ing diversity profiling data are given in Table 2.
(4) The fourth investigation was undertaken to il-

lustrate the differences between HARPick and Chem-
Diverse in multiple component product profiling. On
this occasion, primary comparisons were made in terms
of reagent selection control. The data set chosen for
analysis was a subset of the hypothetical library shown
in Figure 3. All 67 reagents from component 1 and the
first 19 reagents from component 2 were selected (the
full set was not used since it would require nearly 6 days
CPU to be profiled in Chem-Diverse). Two experiments
were executed using this data set.
(i) Chem-Diverse was used to select a subset of the

library based on pharmacophore diversity. The mol-
ecules were ordered using the Chem-X “sample” com-
mand, which tries to ensure maximal difference in
F-group keys (Chemical Design 2D fingerprints5) at the
start of the list. The maximum pharmacophore overlap
percentage permitted between each keyed molecule and
the total library key was set to 95% (higher than in the
previous studies as the molecules are much more closely

Table 1. Results from Study 2

property partition
function scores

calculationa
no. of unique

pharmacophoresb
total no. of

pharmacophores ha pp pa
no. of calculable
conformers

run parameters
Conscore, w, x, y, z

Chem-Diverse 2(i) 49829 68987 0.33 0.66 0.43 2.2 × 108 not applicable
{71096c}

HARPIck 2(ii)(a) 105222 419870 0.97 0.69 0.70 4.0 × 108 1, 1, 0, 0, 0
HARPick 2(ii)(b) 61913 93977 1.00 0.90 0.85 6.4 × 108 1, 1, 1, 0.75, 0
HARPick 2(ii)(c) 70656 137801 0.90 0.79 0.54 2.4 × 106 1, 2, 0.5, 0.75, 0.33

{87566c}
random 2(iii) 39625 80556 0.54 0.47 0.34 1.1 × 108 not applicable
a Time taken for Chem-Diverse calculation ∼22 h. All primary HARPick calculations ran for between 8 and 22 min (10000-25000

iterations at a speed of ∼40 iterations per second). b Number of unique pharmacophores present that pass the 0.7 perimeter ratio test.
The Chem-Diverse results have been converted to reflect this. c Unique pharmacophore score in unrestricted space (no perimeter filter
applied). This was the pharmacophore space used during the Chem-Diverse selection procedure.

Figure 5. Partition occupation distributions for largest mo-
lecular pharmacophore perimeters (ppssee Equations 1 and
6) from study 2. Left-hand y-axis and lines show distributions
for selected subsets of the SDF, while right-hand y-axis and
columns show distribution across the whole library.
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related than in the SDF). All molecules in the library
were processed, with any passing the selection criterion
being added to the chosen subset. This calculation
resulted in the selection of 50 molecules.
(ii) HARPick was then run, maximizing the internal

pharmacophore diversity of 50 compounds. Rather than
being allowed to select products in an unconstrained
manner (as we must in Chem-Diverse), the programwas
forced to select only 10 reagents from component 1 and
5 reagents from component 2. The following values and
weights were applied to the diversity function: Conscore
) 1, w ) 1, x ) 0, y ) 0, z ) 0. On this occasion no
pharmacophore perimeter filters were applied to the
molecular pharmacophore descriptors. Results for study
(4) are given in Table 3.
(5) The fifth and final study was used to illustrate

the ability of HARPick to build constrained libraries.
The full hypothetical library of our two component data
set (Figure 3) was chosen as the library to be profiled.
(i) Two HARPick runs were undertaken, with the

calculation constrained to select 20 reagents from
component 1 and 50 from component 2: (a) Maximize
internal pharmacophore diversity only. The following
values and weights were applied to the diversity func-
tion: Conscore ) 1, w ) 1, x ) 0, y ) 0.5, z ) 0. (b)
Starting with the selections made in run (5)(i)(a),
maximize internal pharmacophore diversity. At the
same time, weight the calculation towards pharmaco-
phores which fill relative voids in the SDF library profile
shown in Figure 4. The following weights were applied
to the diversity function: v ) 1, w ) 1, x ) 0, y ) 1, z
) 0. The â value applied to the av cov calculation (eq

5) was set to 10, which lead to a maximum scoring
pharmacophore occupation level of 7 for the constraint
term. The minimizing function (rather than the full
simulated annealing search procedure) was employed
for this calculation.
(ii) To provide a reference set, the average data from

three random selections of 20 reagents from component
1 and 50 from component 2 were collated.
Note: For both the above HARPick calculations,

structure pharmacophores with a perimeter ratio of less
than 0.7 relative to the largest pharmacophore perim-
eter found in the same molecule were removed. The
resulting diversity profiling data are given in Table 4.

Discussion

Study 1 (Figure 4) clearly illustrates the problems of
a binary profile. The SDF library studied contains only
20 168 molecules and a strict perimeter filter was
applied, yet over 68% of the total geometrically acces-
sible pharmacophores are present in the data set. It
should be noted that a significant number of these
accessible pharmacophores might well be considered
unsuitable in medicinal chemistry terms (e.g. acid-
acid-acid, lipophilic-lipophilic-lipophilic, all three
distances > 20 Å etc.), thus the actual occupation level
is almost certainly higher. When no perimeter filter is
applied, over 15 million pharmacophores are present in
the library, which is 3 times the number present in the
profile used. If all of these pharmacophores were
included, the number of occupied bins would clearly be
even greater. It is thus obvious that saturation of a

Table 2. Results from Study 3

property partition
function scores

calculationa
no. of unique

pharmacophoresb
total no. of

pharmacophores ha pp pa
no. of calculable
conformers

run parameters
Conscore, w, x, y, z

Chem-Diverse 3(i) 37811 58391 0.8 0.67 0.47 3.7 × 105 not applicable
HARPick 3(ii)(a) 73999 237656 0.82 0.55 0.57 1.1 × 106 1, 1, 0, 0, 0
HARPick 3(ii)(b) 55677 99180 0.89 0.92 0.60 4.9 × 105 1, 1.5, 1, 0.75, 0
HARPickc 3(ii)(c) 55156 100997 0.80 0.86 0.57 3.1 × 105 1, 2, 0.5, 0.75, 0.33

{61207} {109371} {0.88} {0.92} {0.61} {3.1 × 105}
HARPick 3(ii)(d) 50811 69727 0.46 0.55 0.36 4.1 × 105 1, 1.75, 0, 1, 0
HARPick 3(ii)(e) 49994 78191 0.71 0.71 0.55 3.1 × 105 1, 1.75, 0.25, 1, 0.33
random 3(iii) 26992 56102 0.45 0.37 0.28 3.1 × 105 not applicable
a Time taken for Chem-Diverse calculation ∼4 h. All primary HARPick calculations ran for between 5 and 20 min (10000-25000

iterations at a speed of ∼50 iterations per second). b Number of unique pharmacophores present that pass the 0.7 perimeter ratio test.
The Chem-Diverse results have been converted to reflect this. c Long simulated annealing run with same diversity function shown in
brackets. This job required ∼3 CPU hours to execute 500 000 iterations.

Table 3. Results from Study 4

calculation
no. of unique

pharmacophores
total no. of

pharmacophores

no. of reagents
selected from
component 1

no. of reagents
selected from
component 2

no. of calculable
conformers

run parameters
Conscore, w, x, y, z

Chem-Diverse 4(i) 55281 290131 23 13 2.2 × 107
HARPick 4(ii) 50951 235944 10 5 1.8 × 107 1, 1, 0, 0, 0

Table 4. Results from Study 5

Conscore
calculationa

no. of unique
pharmacophores

total no. of
pharmacophores Uniqueb

no. of pharmacophores
found in scoring bins

run parameters
Conscore, w, x, y, z

HARPick 5(i)(a) 78567 806539 3.4 99696 1, 1, 0, 0.5, 0
(12%)

HARPick 5(i)(b) 79125 1079998 7.9 203061 0, 1, 0, 1, 0
(19%) ν ) 1, â ) 10

random 5(ii) 51791 1033772 2.3 51837 not applicable
(5%)

a HARPick calculations ran for around 30 min (∼20000-25000 iterations at speeds of around 11[5(i)(b)]-16[5(i)(a)] iterations per second).
b See eqs 3-6.
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binary key will quickly become a problem. In addition,
the histogram clearly shows the unevenness of the
pharmacophore distribution. While over 50 000 phar-
macophores are hit between 1 and 10 times, around
40 000 are hit more than 30 times. If we are to take
full advantage of pharmacophore keys for constrained
library design, it is evident that we will need to exploit
this distribution information (as HARPick attempts to,
using eq 3). Studies 2 and 3 (Tables 1 and 2) clearly
illustrate the many advantages of a customizable di-
versity function when addressing the profiling problem.
Both Chem-Diverse and HARPick are able to consider-
ably improve molecular selection based on pharmaco-
phore count, compared to random selections (2(iii) and
3(iii)). HARPick calculations 2(ii)(a) and 3(ii)(a), which
were set to purely maximize pharmacophore diversity,
are able to find around twice the number of pharma-
cophores of the comparable Chem-Diverse runs. As one
would expect, however, the molecules chosen are sub-
stantially more flexible and promiscuous (as evidenced
by the total pharmacophore and calculable conformer
counts) and are also not optimally partitioned in our
simplified version of shape space. The remaining
HARPick calculations in studies 2 and 3 illustrate how
we can address these various selection features through
simple customization of the diversity scoring function.
Calculations 2(ii)(b) and 3(ii)(b) show how the inclusion
of the partition function (eq 1) in the diversity score
considerably improves the shape property partitioning,
while still allowing good pharmacophore diversity.
Figure 5 illustrates the effect of including the partition
function (eq 1) in the diversity score. Chem-Diverse is
seen to broadly follow the trends present in the whole
SDF library with respect to perimeter distribution.
Study 2(ii)(a), which is only tuned to maximizing
internal pharmacophore diversity, shows a preponder-
ance of larger perimeter selections. Studies 2(ii)(b) and
2(ii)(c), however, both of which include a partition
weighting in their diversity score, show a significantly
more even partitioning of perimeters. Studies 2(ii)(c)
and 3(ii)(c) illustrate how the addition of a flexibility
minimization function (eq 2) substantially reduces the
number of calculable conformers present in the selected
data sets. Even when we analyze the unique pharma-
cophore count in unfiltered space as applied in the
Chem-Diverse calculations (Table 1, footnote c), the
HARPick selection still contains substantially more
pharmacophores. HARPick run 3(ii)(d) shows how
increasing the weighting for the Totpharm denominator
term (eq 6) can dramatically improve the ratio of unique
pharmacophore occupation to total pharmacophore count
(i.e. reduce the pharmacophore promiscuity ratioUnique/
Totpharm). Finally, calculation 3(ii)(e) illustrates that
even with the inclusion of all the nonconstraint func-
tions, the resulting HARPick selection is able to out-
perform the Chem-Diverse data set. Both flexibility and
partition scores are improved, over 12 000 extra phar-
macophore types are found, and a comparable pharma-
cophore promiscuity ratio is maintained (64% for
HARPick versus 65% for Chem-Diverse). Another
Chem-Diverse problem highlighted by study 3 is the fact
that only 4500 structures were profiled to achieve the
required selection of 400 molecules. The only way to
control the size of the selected data set is to force the
calculation to terminate after a fixed number of struc-

tures have been chosen. This means that, unlike in
HARPick, there is no way to sample the whole of
available structure space.
Study 4 illustrates the advantage of decoupling the

diversity calculation from the selection procedure (Table
3). Chem-Diverse selected 50 products from the avail-
able product data set. Rather than choosing the most
efficient combination of reagents (15), however, Chem-
Diverse selected products containing 36 different con-
stituents. This could be considered as a selection of 61%
efficiency, setting 15 as 100% efficient and 69 (the
largest number of reagents which could be selected from
50 products of this two component data set) as 0%
efficient ([69 - 36] × 100/[69 - 15]). In contrast, it is
a simple matter in HARPick to define the requirement
that a 50 product selection from a two component
reaction contain 10 reagents from component 1 and 5
reagents from component 2. Thus a 100% efficient
selection can be made with ease, and in this case the
resulting data set is of comparable quality to the
significantly less efficient set chosen by Chem-Diverse.
This is of substantial importance, since many chemists
wish to create multidimensional libraries of 100%
efficiency, both on grounds of cost and ease of robot
programming. The final study illustrates the advan-
tages of applying nonbinary pharmacophore constraints
to diversity profiling calculations. As one would expect,
both constrained and unconstrained HARPick runs
outperform random selections from the perspective of
filling diversity voids. The unconstrained HARPick
search (5(i)(a)) does significantly better than random
(study 5(ii)) because, although the SDF profile contains
many pharmacophores, its relatively small size still
leaves substantial holes in pharmacophore space. As a
consequence, maximizing pharmacophore spread is
bound to increase the constraint score. Nevertheless,
as soon as we constrain our selection specifically to fill
these voids (calculation 5(i)(b)), considerable improve-
ments are observed. While the internal diversity of the
system is maintained, the average constraint score per
pharmacophore type is found to more than double, and
the number of pharmacophores found in scoring bins
as a proportion of the total pharmacophores present
increases from 12% to 19%. In Chem-Diverse it is
currently only possible to count pharmacophores which
have not been hit at all in the constraining libraries as
voids (the binary key problem). Also there is no way to
couple intra- and interlibrary diversity in the calcula-
tion. Combine this with the 6 CPU days required for a
single Chem-Diverse calculation on the library, and it
is clear that a comparable calculation would be imprac-
tical.
The results in study 5 highlights a feature of complex

scoring functions. Intuitively, one would expect the
number of unique pharmacophores found in study 5
calculations to be greater for the unconstrained search
(calculation 5(i)(a)). In fact we find that the constrained
search (calculation 5(i)(b)) contains slightly more unique
pharmacophores. This is because, when we include the
Conscore (eq 3) function, its nonbinary nature allows
more pharmacophore space to contribute to the diversity
score. As a consequence the relative contribution of the
Totpharm denominator term is reduced, allowing the
presence of more promiscuous molecules. This can be
seen by the consequent increase in the total number of
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pharmacophores seen in Table 4. When the Totpharm
weight y was left at 0.5 for study 5(i)(b), more than 1.25
× 106 pharmacophores were present in the resultant
chosen set (data not shown). These results illustrate
the relationships that can be formed between terms in
a complex scoring function. This emphasizes the need
for careful setting of the customizable weights to ensure
that optimal selections are obtained. An interesting
feature of the HARPick calculations is their speed.
Nearly all runs were completed in under 30 min. A
direct comparison with a single Chem-Diverse run is
difficult, as the profiling calculation required to generate
the data for HARPick essentially takes as long as a
single Chem-Diverse study on the same data set. Of
extreme importance, however, is the fact that a single
run rarely suffices when profiling a given library.
Problems such as reagent cost, chemists’ dislike of
certain reagent types, and a suboptimal balance of
physicochemical properties in initial selections can all
lead to the requirement for multiple profiling calcula-
tions. If one considers this in the context of the
hypothetical library studied here, the implications are
clear. Since a single Chem-Diverse profiling calculation
requires nearly 6 days to run, multiple profiles of this
sort become completely untenable. Conversely, with
HARPick, once the pharmacophore data have been
calculated and stored, actual profiling calculations can
be undertaken rapidly, rendering iterative profiling a
simple process.
While the HARPick runs studied all converged to

excellent solutions, finding the global minimum can be
somewhat problematic. The annealing schedule is not
always finding the global minimum, and in some cases
longer runs can improve results; we have also found that
it is possible to obtain good results in a short time span.
This reflects the stochastic nature of the annealing
protocol. We have experimented with several schedules
but could not find a universal recipe. We recommend
using a quick cooling schedule to locate an approximate
minimum, followed by a review of the results before
trying a longer schedule. We also note that, given that
our diversity measures are not the absolute truth, a
near-global minimum may be just as valid a solution
as a global minimum of comparable depth. Repeated
calculations for study 3 (data not shown) using identical
annealing calculations led to selections with an average
of 26% of molecules in common. Repeated calculations
of the longer (500 000 iteration 3(ii)(c)) run (data not
shown) lead to selections with 51% of molecules in
common. Achieving a 100% identical selection for this
study is difficult, however, as no attempt has been made
to remove very similar molecules from the system. It
would thus be simple for HARPick to substitute near-
identical structures into the system and achieve the
same quality profile (as we observed from the 3(ii)(c)
run statistics (data not shown), which were found to be
near-indistinguishable). For calculations involving pre-
clustered (and hence nonidentical) reagents, as in study
4, repeated runs were able to converge to the same data
set selections. As with many such stochastic problems,
however, the ability to find the global minimum will be
tied to many factors, the primary ones here being the
size and constitution of the data set. Nonetheless, these
studies show that it is possible to produce good results
over relatively short time scales. It should be empha-

sized that the studies we have undertaken are on the
same scale as would be envisaged in practical profiling
calculations. Indeed, the hypothetical library used
contains unusually promiscuous molecules (∼35 × 106
pharmacophores across 33 835 molecules with the phar-
macophore perimeter filter being applied), with the
average structure containing on average 4 times the
number of pharmacophores present in a molecule of the
SDF.
The computational complexity of the algorithm is hard

to define because of its heuristic nature. 90% of cpu
time is taken up in pharmacophore evaluation, which,
to a first approximation, scales linearly with the number
of pharmacophores in the set. Use of a less compute
intensive primary descriptor would lead to a significant
increase in program speed. Furthermore, although
collating the initial profiling data for HARPick across
the full product data set can be time consuming (6 days
CPU in the case of the hypothetical library studied
here), the profiling procedure lends itself easily to
parallel calculation. It is thus a simple task to spread
the profiling calculation across all available CPUs,
dramatically reducing the time required to collate the
pharmacophore data. This phase scales as the number
of products in the set, linked to granularity of the
pharmacophoric analysis. In the annealing phase, the
number of products evaluated crudely varies as the
square of the number of reagents chosen. The rate of
convergence depends on the cooling schedule and the
redundancy in the set (i.e. the degree of separation of
the global minimum from other minima). Of these
factors, our guess is that the controlling one will be the
number of reagents, so that the algorithm has an
approximately quadratic dependence. However, we note
that the RAM requirements will probably prove a more
demanding constraint than the algorithmic complexity.
Currently, the program stores all the pharmacophores
present in a product data set in RAM for easy access.
To store the 35 million pharmacophores of the combi-
natorial library studied here requires around 140 Mbytes
of RAM. One could envisage a modification of HARPick,
however, where only the current selected set of products
are held in RAM. All remaining pharmacophore profiles
would be stored on disk and accessed as required by the
optimization algorithm reagent selections. With this
program structure, only around 5 Mbytes would have
been required to store the 1000 selected products from
study (5). The performance implications are not clear,
however, and from our own perspective, easy access to
cheap RAM has made such a modification a low priority.
The exact nature and type of stochastic optimization

algorithm that would give the best results needs further
investigation. While the simulated annealing protocol
used above was found to work well, the random nature
of reagent selection suggests the efficiency of the
procedure might be improved upon. Intuitively, one
would imagine that the selection of reagents possessing
properties unique to a library would generally lead to
an improvement in the fitness of the chosen data set.
An algorithm which is able to retain a “memory” of
previous mutation quality31 may well be found to
converge more rapidly to a preferred solution.
The primary feature emphasized by the above calcu-

lations is control. The application of a stochastic
optimization algorithm allows us command over both
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the number of reagents chosen for each component, and
the nature of the diversity function used to select them.
The potential flexibility of such an approach is clear.
In principle, any descriptor could be applied to the
scoring functions. One could envisage maximizing
functions (e.g. 3D pharmacophore or 2D fingerprint
coverage/reagent supplier quality), minimizing functions
(e.g. cost per reagent), partition functions (general
shape/log P) and bounding functions (zero score products
with properties outside bounds, e.g. minimum/maxi-
mum log P). In principle, a totally customizable scoring
function could be devised, with the user able to choose
which properties are included in the scoring routine, and
the functions used on them. With careful application
of user weightings for each component function, the
result would be a totally flexible profiling paradigm.
This is currently an area of active research.

Conclusions
The objective of this research was to tackle the

problem of combinatorial library design, in a manner
that answered the needs of our medicinal chemists. The
methodologies described above overcome many of the
inherent deficiencies present in first generation diver-
sity tools. The techniques allow efficient storage of
pharmacophore descriptors, explicit reagent selection
during product-based diversity analysis, easy incorpora-
tion of alternative user-defined parameters, plus more
extensive profiling tools to allow library designs con-
strained by already synthesized product databases. All
of these features provide the basis for a highly versatile
profiling paradigm which should prove extremely useful
in library design.
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